TOPIC 4 - OVERVIEW

1.	EXCHANGE-TRADED INTEREST-RATE DERIVATIVES		4.2
	1.1	Hong Kong Interbank Offered Rate Futures	4.2
2.	OVER-THE-COUNTER INTEREST RATE DERIVATIVES		
	2.1	Forward Rate Agreements	4.2
	2.2	Interest-rate Swaps	4.3
	2.3	Over-the-counter Interest-rate Options	4.4
3.	. PRICING INTEREST RATE DERIVATIVES		
	3.1	Pricing HIBOR Futures Contract	4.6
	3.2	Calculating the Contracted Value of HIBOR Futures	4.7
4.	HED	GING USING INTEREST RATE DERIVATIVES	4.8
	4.1	Hedging Using HIBOR Futures	4.8
	т. 1		4.0
5.	TRA	DING STRATEGIES FOR INTEREST RATE DERIVATIVES	4.11
	5.1	Trading Strategies Using HIBOR Futures	4.11

1. EXCHANGE-TRADED INTEREST-RATE DERIVATIVES

- Exchange-traded futures contracts offer **hedgers**, **speculators and arbitrageurs** a product with the following advantages:
 - Capital effectiveness
 - Cost effectiveness
 - Guaranteed settlement

1.1 Hong Kong Interbank Offered Rate Futures

- There are two types of Hong Kong Interbank Offered Rate (HIBOR) futures:
 - > Three-month HIBOR futures contracts introduced in September 1997
 - > **One-month HIBOR** futures contracts introduced in October 1998
- HIBOR futures contracts are cash-settled
- The are designed to enable management of interest-rate risk
- HIBOR is the rate on which all Hong Kong dollar-denominated instruments are traded between banks in Hong Kong

2. OVER-THE-COUNTER INTEREST RATE DERIVATIVES

- According to Bank of International Settlements, the outstanding notional amounts of OTC interest-rate derivatives at the end of 2019 was USD449 trillion – 90% were swaps and forward rate agreements (FRAs) and 10% were interestrate options
- All OTC derivatives are **flexible products**, which are **traded in a decentralised marketplace**
- Development of the OTC-traded interest-rate derivatives market was facilitated by the establishment of the International Swaps and Derivatives Association (ISDA) and the introduction of the ISDA master agreement
- The 2008 global financial crisis exposed the downsides of **counterparty risk** in the OTC markets as trades were not guaranteed by any exchange

2.1 Forward Rate Agreements (FRAs)

- An FRA is an agreement between two parties that fixes an interest rate for a period occurring at some time in the future
- FRAs are covered in Topic 2, Section 2

2.2 Interest-Rate Swaps (IRSs)

- Transactions in which two parties agree to make periodic payments to one another computed on the basis of specific interest rates on a notional principal amount
- Usually, there are two legs or payments: a **payment based on a floating rate** of interest (LIBOR or HIBOR); and a **payment based on a fixed rate** of interest
- The swap market began in 1980 and is now the largest type of traded interestrate derivative in the OTC market
- The **largest swap market is in US dollar**, followed by the Euro, Japanese Yen, and the British pound sterling. IRSs are traded in many countries
- Hong Kong is one of the most active markets in the Asia Pacific region
- In Hong Kong, certain types of IRS transactions are subject to **mandatory reporting to the Hong Kong Trade Repository**, operated by the Hong Kong Monetary Authority, and **mandatory clearing** at SFC designated central counterparties

2.2.1 Swap Spreads

- Defined as the **difference between the swap rate and the yield on government bonds** of the same maturity
- The swap spread is **a credit spread**, representing the risk premium between an IRS and risk-free government securities
- Many consider it the most important credit spread
- Swap spread is a good indicator of the credit condition and will increase substantially whenever credit crunches occur

2.2.2 Application of Interest-Rate Swaps

- Using interest-rate swaps for hedging: Banks can use IRSs to lock in a spread over the cost of funds by borrowing at a short-term interest rate (LIBOR/HIBOR) and paying a fixed rate in a long-term IRS
- Using interest-rate swaps for trading: If investors expect interest rates to rise, they can pay a fixed rate and receive a floating rate. If investors expect interest rates to fall, they can pay a floating rate and receive a fixed rate.

2.2.3 Interest-rate Swap Variations

• As well as plain vanilla IRSs, there are a number of variations which are regularly traded and attract significant liquidity

Basis Swaps

- Both parties make their periodic payments based on floating interest rates, known as floating/floating IRSs. The most common are structured to manage:
 - > Index Basis: The first leg references LIBOR, the second another index
 - Tenor Basis: Two different benchmarks are exchanged, such as onemonth vs six month

Compounding Swaps

• Interest earned can be compounded over more than one fixed period, determined by the counterparties

Overnight Index Swaps (OISs)

- The floating leg is referenced to an overnight rate index, typically determined by a central bank, rather than LIBOR/HIBOR
- OISs have grown in importance as a benchmark rate and are considered good indicators of sentiment for the interbank credit markets

Variable Notional Swaps

- Interest rate payments are based on a notional which is subject to a schedule which may periodically increase or reduce the notional over time
- For example, where the notional periodically reduces to align to a mortgage repayment schedule, the swap will be known as an "amortising swap"

Forward Starting Swaps

- A structure where the initial exchange of cashflows is delayed for a period of time determined by the counterparties for example, a five-year swap starting in two years' time
- Can be achieved by trading two swaps

Stub Swaps

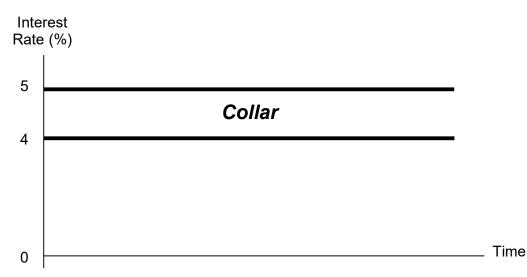
- Swaps with a total life that is not exactly aligned with the coupon periods of the rate which they reference
- For example, a 13-month swap referencing a three-month LIBOR would have four standard quarterly coupon periods and a one month "stub period", which could be at the beginning or end of the swap

2.3 Over-The-Counter Interest-Rate Options

2.3.1 Caps, Floors and Collars

- Caps and floors are options that can be bought to hedge against a rise or fall interest rates
- The **seller of a cap** agrees to compensate the buyer if interest rates rise above a specified strike rate. The buyer pays the seller a premium
- **Borrowers can hedge** the cost of borrowing by buying caps. If interest rates do not rise, beyond the strike rate, the seller is ahead by the premium
- The **seller of a floor** agrees to compensate the buyer if interest rates fall below a specified strike rate. The buyer pays the seller a premium
- Lenders can hedge the interest-rate received by buying floors. If interest rates do not fall, beyond the strike rate, the seller is ahead by the premium

- For both caps and floors, the agreement is for a specified period over a notional amount
- A collar is a combination of a cap and a floor by combining the two, both upside and downside risks can be hedged
- If both cap and floor were set at the same strike price, the net effect would be the same as entering into a swap
- A zero-cost collar can be established by:
 - Selecting the appropriate floor (or cap)
 - Selecting the opposite cap (or floor) with a net present value which, when added to the premium of the floor (or cap), will result in a zero net premium
- The purchase of either a cap or a floor can be offset by the sale of a cap or a floor


Creating a Collar – Example

A bank with a HK\$100 million floating rate borrowing and paying 5% interest has an annual interest-rate expense of HK\$5m.

By purchasing a cap at 6%, for HK\$1m, the bank has capped the maximum interest rate it will pay.

At the same time, the bank sells a floor at 4% and receives a premium of HK\$1m, thereby offsetting the cost of the cap.

Should interest rates reach 4% or lower, the bank will need to pay the buyer of the floor. However, with interest rates at 4%, the bank's interest expense on its loan would fall to HK\$4m, a reduction of HK\$1m.

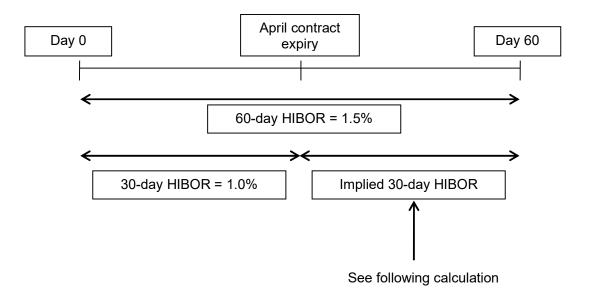
Creating a Collar

2.3.2 Swaptions

- A swaption is the option to enter into a swap
- Two types of swaptions: calls and puts
- A **receiver swaption**, like a call option on a swap, gives the buyer the right, but not the obligation, to receive a fixed rate
- A **payer swaption**, like a put option on a swap, gives the buyer the right, but not the obligation, to pay a fixed rate
- There are several types of expiry for swaptions, including American, European and Bermudan (the last is not described)

2.3.3 Bond Options

- Bond options include calls and puts on quantities of individual bonds or shorter-dated securities, or baskets of longer-dated securities
- Buyers and sellers of bond options must specify the types of bond and when they will be delivered


3. PRICING INTEREST RATE DERIVATIVES

3.1 Pricing HIBOR Futures Contract

- The theoretical price of a short-term interest-rate futures contract **assumes that no arbitrage opportunity exists** between the futures market and the underlying cash market
- The HIBOR futures contract locks in an interest rate for a future period

Example

Assume that there are 30 days before the expiry of the April 20x1 one-month HIBOR futures contract

Calculation of interest rate implied for April 20x1 one-month HIBOR futures contract

Deposit \$100 for 30 days at 1%: \$100 x (1 + (0.01 x 30/365)) = 100.0822

Deposit \$100 for 60 days at 1.5%: \$100 x (1 + (0.015 x 60/365)) = 100.2466

\$100.0822 invested at r for 30 days produces \$100.2466

=> (1 + r) = \$100.2466/\$100.0822

$$=> (1 + r) = 1.001643$$

r for 30 days = 0.001643 => r for 365 days = 0.001643 x 365/30 = 0.01999

Therefore, the implied 30-day HIBOR on the expiry of the April futures contract is 2% pa

- The market convention of quoting the futures price is to deduct the annual interest rate from 100
- So, the **theoretical futures price** of the April 20x1 one-month HIBOR futures contract is 100.00 2.00 = 98.00 *must know for the exam*

3.2 Calculating the Contracted Value of HIBOR futures

• Contracted value of a HIBOR futures contract is:

quoted price x (value of minimum fluctuation x 100)

- Value of minimum fluctuation = HK\$125
- Contract sizes:
 - > HK\$15m for one-month HIBOR futures
 - > HK\$5m for three-month HIBOR futures

Example

What is the cash settlement value of a HIBOR futures contract trading at 98.00?

Solution

 $98.00 \times (HK$ 125 x 100) = HK 1,225,000

4. HEDGING USING INTEREST RATE DERIVATIVES

- With debt securities, there is an inverse relationship between yield and price:
 - > When price rises, yield falls
 - > When price falls, yield rises
- Similarly, with interest-rate futures contracts, there is an **inverse relationship** between the interest rate and the interest-rate futures contract price
 - > When interest rate rises, futures contract price falls
 - > When interest rate falls, futures contract price rises
- When an investor **buys an interest-rate futures contract**, his bond portfolio's exposure to a change in interest rate increases
- Conversely, when an investor **sells an interest-rate futures contract**, her bond portfolio's exposure to a change in interest rate decreases
- Therefore, interest-rate futures contracts can be used to **change the duration** (bond price sensitivity to a change in interest rates) of a bond portfolio

4.1 Hedging Using HIBOR Futures

Hedging a Current Market Position

- Details for this hedging example:
 - In April 20X1, a fund manager holds a broad portfolio of short-dated discount securities (average 90 days)
 - The portfolio has a notional value of HK\$800 million and an average investment yield of 3%
 - > The fund manager fears a rise in interest rates over the next three months
- Buy or sell futures?
 - To profit from a rise in interest rates, the fund manager needs to sell futures. If interest rates rise, the price of futures will fall

• Which contract to sell?

- Available contracts are: April, May, June and September
- Given the fund manager's concerns over the next 3 months, the most appropriate contract is June, which is currently trading at 97.4

• How many contracts?

- We need to divide the notional value of the portfolio by the notional value of the HIBOR futures contract
- > HK\$800 million / HK\$5 million = 160 contracts

• Implementing the hedge

Sell 160 June 20X1 three-month HIBOR futures @ 97.4

• Closing the Hedge

- In late June 20X1, the interest rate has risen: average portfolio yield has risen to 3.2% and HIBOR futures are now trading at 96.7
- The fund manager decides it is time to close the hedge and exit his futures position
- To close the position, he will enter into a reversing trade which will involve buying 160 June 20X1 three-month HIBOR futures at 96.7

• Loss in the physical market:

The bond portfolio will have lost value. The amount of the loss will depend upon portfolio duration

• Profit in the futures market:

- > Difference in price: 97.4 96.7 = 0.7
- Profit on each futures contract: 0.7 x HK\$125 x 100 = HK\$8,750
- Overall profit: 160 contracts x HK\$8,750 = HK\$1,400,000

Physical Market	Derivatives Market	
1. Fund holds an bond portfolio valued at HK\$800 million		
	 Sells 160 3-month HIBOR futures @ 97.4 	
3. Interest rates rise	4. 3-month HIBOR futures fall to 96.7	
5. Value of bond portfolio falls	 Buys back 160 3-month HIBOR futures for @ 96.7 	
7. Loss in physical market offset by profit made on derivatives trade of HK\$1,400,000		

• Details for this hedging example:

- In April 20X1, a corporate treasurer expects to have surplus funds of HK\$800 million in three months' time. The funds will be used for a project in another three months' time
- Accordingly, the treasurer wants to invest in a short-term instrument to enhance return, but is expecting the short-term interest rate to fall in the near future
- > The treasurer wants to lock in the interest rate that will be earned

• Buy or sell futures?

To profit from a fall in interest rates, the treasurer needs to buy futures. If interest rates fall, the price of futures will rise

• Which contract to buy?

- > Available contracts are: April, May, June and September
- Given that the funds will only be available in 3 months' time, the most appropriate contract is June, which is currently trading at 96.8

• How many contracts?

- We need to divide the value of the surplus funds to be received by the notional value of the HIBOR futures contract
- > HK\$800 million / HK\$5 million = 160 contracts

• Implementing the hedge

> Buy 160 June 20X1 three-month HIBOR futures @ 96.8

• Closing the Hedge

- In late June 20X1, the interest rate has fallen and HIBOR futures are now trading at 97.2
- The treasurer decides it is time to close the hedge and exit his futures position
- To close the position, he will enter into a reversing trade which will involve selling 160 June 20X1 three-month HIBOR futures at 97.2

• Profit in the futures market:

- ➢ Difference in price: 97.2 − 96.8 = 0.4
- Profit on each futures contract: 0.4 x HK\$125 x 100 = HK\$5,000
- > Overall profit: 160 contracts x HK\$5,000 = HK\$800,000

Physical Market	Derivatives Market		
	1. Buys 160 3-month HIBOR futures @ 96.8		
2. Interest rates fall	3. 3-month HIBOR futures rise to 97.2		
4. Return on surplus fund investment will be lower due to fall in interest rates	5. Sells 160 3-month HIBOR futures for @ 97.2		
	6. Profit on futures trade is HK\$800,000		

5. TRADING STRATEGIES FOR INTEREST RATE DERIVATIVES

5.1 Trading strategies Using HIBOR Futures

• To speculate on interest rates rising:

- > Sell HIBOR futures now at current HIBOR futures price
- Buy back same number of futures contracts at HIBOR futures price when the reversing trade takes place
- If interest rates have risen, a profit will be made; if interest rates have fallen, a loss will be made
- The settlement value will be: change in futures price x HK\$125 x 100 x number of contracts

• To speculate on interest rates falling:

- > Buy HIBOR futures now at current HIBOR futures price
- Sell same number of futures contracts at HIBOR futures price when the reversing trade takes place
- If interest rates have fallen, a profit will be made; if interest rates have risen, a loss will be made
- The settlement value will be: change in futures price x HK\$125 x 100 x number of contracts